Том 28. Математика жизни. Численные модели в биологии и экологии

Том 28. Математика жизни. Численные модели в биологии и экологии

Авторы:

Жанр: Математика

Циклы: не входит в цикл

Формат: Полный

Всего в книге 40 страниц. Год издания книги - 2014.

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.

Читать онлайн Том 28. Математика жизни. Численные модели в биологии и экологии


Предисловие

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается далеко не одна биология. Физики, а затем и математики обнаружили ряд биологических явлений, которые можно описать на математическом языке. Николай Рашевский, Карл Людвиг фон Берталанфи и Алан Тьюринг положили начало плодотворному союзу математического формализма и науки о жизни, а компьютеры позволили ученым проводить количественные исследования биологических явлений. Так родилась новая дисциплина — математическая биология, или биоматематика. Математическая биология внесла и продолжает вносить свой вклад в развитие биологии как посредством теоретического изучения динамических систем (мозга, муравейника или экосистем), так и благодаря решению практических задач в ходе изучения раковых заболеваний, эпидемий СПИДа или свиного гриппа.

Сегодня ответы на множество вопросов биологии и биомедицины можно дать с помощью математического анализа. Так, размножение раковых клеток в опухолях определенного типа описывается функцией Гомпертца. Во многих процессах в сфере биотехнологий при мониторинге биореакторов используются дифференциальные уравнения. Даже такие проблемы современности, как возможное изменение климата Земли, изучаются с помощью математических моделей, в частности климатической модели Лоренца.

В этой книге представлен панорамный обзор различных аспектов биоматематики.

В первой главе мы говорим об основных достижениях этой науки и ее историческом развитии. Во второй главе показана возможность использования дифференциальных уравнений для описания динамики биологических явлений, то есть явлений, благодаря которым становится возможным сохранение жизни. Эти уравнения очень важны для человечества, так как позволяют решить бесчисленное множество задач, от демографических проблем, о которых писал еще Мальтус в 1798 году, до определения возраста ископаемых посредством радиоуглеродного анализа (этот метод предложил Уиллард Либби в 1950 году).

Математика, конечно же, не смогла остаться в стороне от еще одного притягательного явления. Хаос, о котором мы поговорим в третьей главе, присутствует повсеместно, будь то рост населения, поведение биржевых индексов или электроэнцефалограмма человека. В этой же главе мы рассмотрим еще одну тему, связанную с хаосом, — фракталы, их присутствие в природе (в частности, в виде снежинок или ветвей деревьев), способы графического представления фракталов с помощью компьютера. Хаос и фракталы нельзя изучить без краткого рассмотрения комплексных чисел, а не имея представления о комплексных числах, невозможно понять даже самые яркие и наглядные особенности мира фракталов.

В четвертой главе показано, что математическая биология по большей части основана на использовании числовых таблиц, или матриц, и основную роль в ней играют операции над матрицами. В завершение главы мы рассмотрим законы Менделя и познакомимся с одним из важнейших понятий биологии — полным факторным экспериментом. В пятой главе освещается еще одно математическое понятие, играющее особую роль благодаря множеству способов применения, — векторы. Мы опишем использование векторов в биомеханике, при моделировании нейронных сетей и решении систем линейных уравнений.

И в завершение удивительного путешествия вы узнаете о взаимосвязи математики и экологии. Сегодня ни один проект по охране окружающей среды не обходится без использования формального математического аппарата. В шестой главе мы определим понятие экосистемы и представим матричные популяционные модели, особенно полезные при изучении и сохранении популяций. Отдельно мы рассмотрим одну из классических моделей математической биологии — модель «хищник — жертва» Лотки — Вольтерры[1]. Следующий дискуссионный вопрос, на котором мы остановимся, звучит так: ждет ли нас глобальное изменение климата? Вы увидите, что проблема изменения климата имеет математическую природу, поэтому ответ на поставленный вопрос нельзя дать без знания климатических моделей и применяемого в них математического аппарата. Книга завершается анализом «Маргариткового мира» — математической модели, созданной Джеймсом Лавлоком в 1980-е годы на основе гипотезы Геи. Эта модель бросает вызов дарвинизму и классическим представлениям о сохранении жизни на планете.

Глава 1

Математическая биология в исторической перспективе

В начале XX века Россия напоминала бурлящий котел. Глубокий экономический кризис и социальное недовольство, возникшие после поражения в русско-японской войне 1904–1905 годов и начала Первой мировой войны с Германией в 1914 году, привели к Октябрьской революции. Из-за этих событий физик-теоретик украинского происхождения Николай Рашевский (1899–1972), который сегодня считается создателем математической биологии, вместе с супругой Эмилией покинул страну. Сменив несколько государств, в 1924 году Рашевские осели в США.


Рождение математической биологии

Оказавшись на американской земле, Рашевский приступил к работе в исследовательской лаборатории компании Westinghouse, где занялся изучением деления клеток. Таким образом, деление клеток впервые было рассмотрено с точки зрения физики и математики — подобный подход в те годы считался невероятно передовым.


С этой книгой читают
Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Значимые фигуры
Автор: Йэн Стюарт

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Цифровой журнал «Компьютерра» 2011 № 01 (49)

ОглавлениеИнтервьюБорис Морозов («СофтЛаб-Нск») о виртуальных студиях Автор: Алла АршиноваТерралабSRWare Iron — вариант Google Chrome для параноиков Автор: Андрей ПесоцкийКолумнистыВасилий Щепетнёв: Место для Праздника Автор: Василий ЩепетневКафедра Ваннаха: Возвращение девятнадцатого столетия Автор: Ваннах МихаилАнатолий Вассерман: Вечная тема Автор: Анатолий ВассерманКафедра Ваннаха: Аналоговый вычислитель возвращается Автор: Ваннах МихаилГолубятня-ОнлайнГолубятня: Народный гараж Автор: Сергей ГолубицкийГолубятня: ОРФО для Мака Автор: Сергей ГолубицкийНоутбукиВсё, что нужно знать о мультимедийных ноутбуках Автор: Олег НечайТест HP Pavilion dm4-1100er Автор: Олег НечайНетбуки: зачем они нужны и из чего выбирать Автор: Олег Нечай.


Альберт Кан в истории советской индустриализации

В мировой истории промышленного производства ХХ века имя Альберта Кана не просто широко известно. Оно находится на недосягаемой для многих корифеев-архитекторов высоте, так как неразрывно связано с поистине эпохальным изобретением индустриальной эры — методикой скоростного поточно-конвейерного производства архитектурно-строительной проектной документации.При этом, в истории советского промышленного проектирования имя Альберта Кана бесследно спрятано под толстым слоем безосновательной критики, наглухо замазано лживыми обвинениями и надежно укрыто под вывеской советского проектного института «Госпроектстрой», специально созданного в 1930 г.Фирма А.


Тот, кому за державу обидно
Жанр: Боевик

Генерал полиции Дубровин получает предложение возглавить УВД Ставропольского края. Едва начав изучать ситуацию в регионе, генерал понял, что здесь процветают коррупция, массовые хищения людей и уличная преступность. Кроме того, дают о себе знать банды, которые совершают вооруженные нападения на блокпосты и отделения полиции. Дубровин начинает наводить порядок в крае исключительно жесткими мерами, что, разумеется, многим не нравится. Криминальный авторитет Тенгиз приказывает своим подельникам убить генерала.


Северный Волхв

«Северный волхв» (1993) – последняя прижизненная книга британского мыслителя Исайи Берлина (1909–1997), которая входит в цикл его исследований, посвященных центральным фигурам контр-Просвещения: Жозефу де Местру, Джамбаттисте Вико и Иоганну Готфриду Гердеру. Герой книги Берлина Иоганн Георг Хаманн (1730–1788, полузабытый современник Канта, также, как и он, живший в Кёнигсберге, предстает в его эссе не столько реакционером и хулителем идеи автономного разума, сколько оригинальным мыслителем, ставшим предшественником основных тенденций философии нашего времени – идеи лингвистической природы мышления, неразрывности и взаимопроникновения природы и культуры, аффективных основ познания и множественности типов рациональности.


Другие книги автора
Тьюринг. Компьютерное исчисление. Размышления о думающих машинах

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга.