Сборник задач по математике с решениями для поступающих в вузы

Сборник задач по математике с решениями для поступающих в вузы

Авторы:

Жанр: Математика

Циклы: не входит в цикл

Формат: Фрагмент

Всего в книге 134 страницы. Год издания книги - 2003.

Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.

Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.

Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.

Читать онлайн Сборник задач по математике с решениями для поступающих в вузы


Слово к читателю

Перед вами, дорогой читатель, задачник, адресованный тем, кто готовится к поступлению в вуз. Подобных пособий много, и поэтому, прежде чем приступить к систематическим занятиям, вам предстоит сделать разумный выбор.

Данный сборник представляет собой альтернативу существующим пособиям. Это не набор задач, а набор идей и приемов, используемый при их составлении и решении. И набор минимальный: здесь не тысячи, а примерно 500 задач. На каждую можно потратить по полчаса, а на некоторые — даже по часу. Но общий лимит времени, отведенного на подготовку к вступительным экзаменам, окажется приемлемым.

Мы построили книгу так, чтобы научить читателя самостоятельно решать математические задачи. А для этого он прежде всего должен понять особенности этих задач и задуматься над тем, что их отличает от задач, формулируемых в других науках. Надеемся, что такое понимание появится у читателя после того, как он прочтет материал, содержащийся во введении. Тем самым будут созданы предпосылки для успешной работы с материалом основных глав книги, и читатель сможет перейти к решению задач, приобретая необходимые навыки и накапливая опыт по их разумному применению.

Чтобы помочь в этом читателю, мы избрали простейшую форму, снабдив каждую задачу указаниями, т. е. подсказками, помогающими найти правильный путь к решению. Таких подсказок может быть от одной до трех. Задач с тремя подсказками совсем немного. Для большинства задач имеются одно или два указания. Пользоваться ими можно легко научиться, приступив к систематической работе с задачником. Наш совет: не надо торопиться сразу читать решения. Иной раз, не зная сути указаний, будет трудно его понять.

Первые и вторые указания собраны в самостоятельные разделы. Если к задаче дано только первое указание, то в конце его стоит знак (!). В тех случаях, когда не удается обойтись двумя указаниями, в конце второго стоит знак (!!) и непосредственно после него помещено третье (дополнительное) указание.

Итак, данный задачник содержит необходимый минимум задач, которые предстоит научиться решать при подготовке к вступительному экзамену. Удобно пользоваться двумя задачниками одновременно: данным — для приобретения навыков и хорошо известным задачником M. И. Сканави — для проверки достигнутого уровня подготовки.

В издание включены 50 новых задач, предлагавшихся на вступительных экзаменах в последние годы. Вместе с тем некоторые задачи, не отражающие современную программу математики средней школы, исключены. Оставлены лишь задачи по комбинаторике, которые полезны для факультативных занятий и нужны тем, кто готовится к вступительному экзамену по биологии.

В свое время мы написали этот задачник с замечательным педагогом — Евгением Борисовичем Ваховским. При подготовке данного издания я стремился сохранить уважительное отношение к нашему читателю, которое всегда было для нас обязательным требованием.

Я желаю каждому, кто воспользуется этой книгой, успехов и надеюсь, что вы пришлете свои замечания, пожелания, а также возможные уточнения и дополнения в адрес издательства.

А. Рывкин

Введение

Способы доказательных рассуждений в математике и в других научных дисциплинах различны. Естественным для человеческого сознания является индуктивное мышление, т. е. накопление фактов и последующее их обобщение в рамках теории. В математике все не так. Математика — наука дедуктивная, в ней от общих понятий переходят к частным, устанавливая свойства соответствующих им объектов.

Исходные положения математической теории как бы заранее фиксированы. Это базовые понятия, которые не могут быть математически определены через другие, более широкие понятия, так как сами являются строительными элементами будущей теории (точка, прямая, плоскость, натуральное число). Отношения между базовыми понятиями, принимаемые как истинные, называют аксиомами. Строго говоря, сами базовые понятия вместе с аксиомами, которые их связывают, можно воспринимать как общее развернутое определение основных базовых понятий. (Это не исключает последующего пополнения списка базовых понятий и аксиом.)

Поясним, что мы понимаем под математическим определением и чем оно отличается от других определений.

Иногда говорят, что натуральные числа — это числа, возникающие в процессе счета. Или же, что точка — трехмерный геометрический объект, не имеющий длины, ширины и высоты. Дают и такое определение числа 2: 2 — это то общее, что присуще всем группам предметов, состоящих из двух элементов.

Такие определения нельзя считать математическими.

Математическое определение непременно строится по принципу выделения частного понятия из общего с помощью конкретного отличительного признака. Так поступают в биологии, где род — более широкое понятие, чем вид, а определение вида дается через определение рода (родовое понятие) путем указания видового отличия. Математическое определение должно непременно содержать и родовое понятие, и видовое отличие.

Приведенное выше определение числа 2 этому требованию не удовлетворяет, ибо слова «то общее» нельзя считать родовым понятием — оно не очерчивает конкретное множество объектов.


С этой книгой читают
Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Истина и красота: Всемирная история симметрии
Автор: Йэн Стюарт

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


На том конце радуги
Автор: Дэй Леклер

Преследуя политические цели, Меррик Монтгомери похищает принцессу Алиссу за несколько минут до ее бракосочетания. Им придется провести вместе четыре месяца. Чем же закончится их вынужденное уединение?..


Брачный контракт

Как поступить Патрисии, если Сэм Уэнрайт, ее босс и предмет давней и тайной страсти, просит ее, как лучшего друга, о помощи? Конечно, она готова сделать все, что в ее силах. Но ведь просит он притвориться его невестой и сыграть фиктивную свадьбу.


Директор безлюдного леса

Никто не знает, что ждёт его за углом, какие встречи готовит судьба. Юрий также не предполагал, во что может вылиться поход в лес. Он просто планировал отдохнуть от суеты города, но ... отдохнул от самой жизни. Однако оказалось, что ещё ничего не закончилось. И пусть теперь у него тело ребёнка, а вокруг всё незнакомо и настолько опасно, что шага ступить нельзя, но есть новая, хоть и необычная семья, друзья, враги и миссия. Серьёзная и важная работа, которую просто необходимо выполнить, так как от этого зависит очень многое, на кон поставлена судьба целого мира.


Чужая невеста
Автор: Андреа Йорк

Джулия Макколган была одной из самых знаменитых манекенщиц. Она часто выходила на подиум, блистала на светских приемах, но так и не привыкла к повышенному вниманию публики. Для известной модели она вела отшельнический образ жизни. Оказывается, Джулия регулярно получала угрожающие анонимные письма от какого-то маньяка. Она боялась этого одержимого и почти не появлялась вне дома без Ламберта Уиндема, своего жениха, или его людей.И вот однажды Уиндем заказал модному художнику Алану О'Мейлу портрет своей будущей жены…