Пятьдесят занимательных вероятностных задач с решениями

Пятьдесят занимательных вероятностных задач с решениями

Авторы:

Жанр: Математика

Циклы: не входит в цикл

Формат: Полный

Всего в книге 27 страниц. У нас нет данных о годе издания книги.

Книга в действительности содержит 57 занимательных задач (семь задач скорее обсуждаются, чем решаются). Большинство задач несложно. Лишь совсем немногие из них требуют знания курса анализа, но и в этих случаях неподготовленный читатель все равно сможет понять постановку задачи и ответ. Книга обращена к широкому кругу читателей: ученикам старших классов, педагогам, студентам.

Читать онлайн Пятьдесят занимательных вероятностных задач с решениями


Предисловие

Настоящая книга в действительности содержит 57, а не 50 задач. Некоторые задачи являются подготовительными; в силу различия вкусов часть задач может не показаться читателю интересной, наконец, семь задач скорее обсуждаются, чем решаются. Если у читателя не пропадет интерес, то пусть он попытается доказать последнее утверждение в решении задачи 48. Одна из задач служила предметом исследования многих выдающихся математиков. Может быть, кто-то из читателей даст окончательное решение этой задачи? Скорее всего, нет, но кто знает.

Большей частью своего математического образования я обязан решению различных задач. С годами мне все труднее становится отделить серьезные занятия от решения, казалось бы, «игрушечных» задач. Очень часто элементарные задачи оказывались чрезвычайно полезными при решении серьезных проблем.

Занимательность задачи — великое дело. Задача может быть занимательной по многим причинам: потому, что интересно содержание условия, потому, что интуитивно не понятен возможный ответ, потому, что она иллюстрирует важный принцип, потому, что задача обладает большой степенью общности, потому, что она трудна, потому, что в решении спрятана «изюминка» или просто потому, что ответ элегантен и прост.

В настоящей книге большинство задач не сложны, но есть и трудные. Лишь совсем немногие задачи требуют знания курса анализа, но и в этих случаях неподготовленный читатель все равно может понять постановку и ответ. Автора больше интересовала

занимательность задач, нежели их единый математический уровень. В некоторых случаях, когда для решения требуется формула, которую читатель, быть может, не знает наизусть или вообще не знает, она немедленно приводится. Формулы Стирлинга для факториалов (задача 18) и Эйлера для сумм гармонического ряда (задача 14) служат примерами такой ситуации.

Может быть, читатель, так же как и автор, будет удивлен тем обстоятельством, что числа π и e так часто возникают в вероятностных задачах.

Каждый, кто пишет о задачах на теоретико-вероятностные темы, обязан не только своей профессии математика, но и, возможно, В. Уитворту и его книге «Выбор и случай».

Одним из приятных качеств, предисловий является то, что можно выразить свою благодарность друзьям, помогавшим при написании книги. Р. Рурке автор обязан самой идеей написания такой книги и помощью в терминологических вопросах. Мои старые друзья и советчики А. Глисон, Л. Сэвидж и Дж. Уильямс посоветовали добавить в текст новые задачи и некоторые обобщения уже имевшихся. Мне хотелось бы также поблагодарить К.Л. Чжуна, У. Кочрена, А. Демпстера, Б. Фридмана, Дж. Гаррати, Дж. Гилберта, Л. Гудмана, Т. Харриса, О. Хелмера, Дж. Ходжеса, Дж. Кемени, Т. Лерера, Дж. Маркума, Г. Райффа, Г. Скафа, Дж. Томаса, Дж. Тьюки, Л. Дубинса и Н. Ютца.

Читателю, интересующемуся элементарной теорией вероятностей, можно рекомендовать учебник Ф. Мостеллера, Р. Рурке и Дж. Томаса «Вероятность» («Мир», 1969).

Дальнейший материал содержится, например, в книге В. Феллера «Введение в теорию вероятностей и ее применения» (т. 1, «Мир», 1967 г.)

1964, Ф. Мостеллер

Условия задач

1. Ящик с носками

В ящике лежат красные и черные носки. Если из ящика наудачу вытягиваются два носка, то вероятность того, что оба они красные, равна ½.

(а). Каково минимальное возможное число носков в ящике?

(б). Каково минимально возможное число носков в ящике, если число черных носков четно?

2. Последовательные выигрыши

Чтобы подбодрить сына, делающего успехи в игре в теннис, отец обещает ему приз, если он выиграет подряд по крайней мере две теннисные партии против своего отца и клубного чемпиона по одной из схем: отец — чемпион — отец или чемпион — отец — чемпион по выбору сына. Чемпион играет лучше отца. Какую схему следует выбрать сыну?

3. Легкомысленный член жюри

В жюри из трех человек два члена независимо друг от друга принимают правильное решение с вероятностью p, а третий для вынесения решения бросает монету (окончательное решение выносится большинством голосов). Жюри из одного человека выносит справедливое решение с вероятностью p. Какое из этих жюри выносит справедливое решение с большей вероятностью?

4. Испытания до первого успеха

Сколько в среднем раз надо бросать кость до появления шестерки?

5. Монета в квадрате

В одной из популярных в Америке игр игрок бросает монету с достаточно большого расстояния на поверхность стола, разграфленную на однодюймовые квадраты. Если монета (3/4 дюйма в диаметре) попадает полностью внутрь квадрата, то игрок получает награду, в противном случае он теряет свою монету. Каковы шансы выиграть при условии, что монета упала на стол?

6. «Попытай счастья»

«Попытай счастья» — азартная игра, в которую часто играют в игорных домах и во время народных гуляний. После того как игрок сделал ставку на один из номеров 1, 2, 3, 4, 5, 6, подбрасываются три игральные кости. Если номер играющего выпадает на одной, двух или трех костях, то за каждое появление этого номера игроку выплачивается первоначальная ставка, при этом возвращаются и его собственные деньги. В противном случае игрок теряет ставку. Каков средний проигрыш игрока при единичной ставке? (В действительности можно ставить на несколько номеров одновременно, но каждая ставка рассматривается отдельно.)


С этой книгой читают
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Значимые фигуры
Автор: Йэн Стюарт

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Русский вопрос и институт будущего
Жанр: Политика

Работа "Русский вопрос и институт будущего" посвящена разработке теории субъектности. Исходя из соображений как нравственного, так и методологического характера, автор считает недопустимым игнорирование в исследованиях, касающихся субъектности, якобы избыточно приземленных реалий современного политического процесса. Отсюда включение в статью об общих вопросах элементов анализа российского оппозиционного движения. Отношение к нему у автора неоднозначно. Таким образом, автор заявляет о своей принадлежности к той исследовательской школе, для которой включение ценностного аспекта в исследовательскую деятельность является и допустимым, и эффективным.


Содержательное единство, 1994-2000
Жанр: Политика

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Полное собрание сочинений. Том 35. Октябрь 1917 — март 1918

В 35 том Полного собрания сочинений В. И. Ленина включены произведения, написанные с 25 октября (7 ноября) 1917 года по 5 марта 1918 года – в период от победы Октябрьского вооруженного восстания в Петрограде до VII съезда партии.


Полное собрание сочинений. Том 36. Март-июль 1918

В 36 том Полного собрания сочинений В. И. Ленина входят произведения, написанные в марте-июле 1918 года, в период первой мирной передышки, достигнутой заключением Брестского договора.