Математика. Утрата определенности.

Математика. Утрата определенности.

Авторы:

Жанр: Математика

Циклы: не входит в цикл

Формат: Полный

Всего в книге 204 страницы. Год издания книги - 1984.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.

Рассчитана на достаточно широкий круг читателей с общенаучными интересами.

Читать онлайн Математика. Утрата определенности.


Предисловие редактора перевода

Что такое математика? Каковы ее происхождение и история? В чем отличие математики от других наук? Чем занимаются математики сегодня и каков, по их мнению, ныне статус науки, которая составляет предмет их интересов и профессиональной деятельности? Все эти вопросы живо интересуют многих, но практически ни одно из имеющихся в нашей литературе научно-популярных сочинений не дает на них достаточно полного ответа. Вопрос «Что такое математика?» вынесен в заглавие пользующейся заслуженной известностью книги Р. Куранта и Г. Роббинса [118]. В этом сочинении Курант сделал попытку «конструктивного» определения математики: «Математикой называется все то, о чем говорится в нашей книге». Однако подобный ответ вряд ли можно признать удовлетворительным: он разъясняет суть дела лишь в той степени, в какой авторам названной книги удалось охарактеризовать главные направления математической науки; без сомнения, многих читателей книга Куранта — Роббинса может и разочаровать. Возможно, более всеобъемлющий ответ на поставленные нами вопросы дает другая книга, в значительной мере также созданная под руководством Р. Куранта, — сборник «Математика в современном мире» [137], в котором собраны посвященные математике статьи из известного американского научно-популярного журнала Scientific American{1}. Однако, уделяя большое внимание общим вопросам, эта книга остается всего лишь сборником статей различных авторов, отличающихся одна от другой по стилю, основным установкам и доступности для читателя.

Одним из авторов «Математики в современном мире» был Морис Клайн, который в годы составления этого сборника возглавлял математический факультет Нью-Йоркского университета и был руководителем одного из отделов Математического института им. Куранта. В настоящее время Клайн отказался от всех своих официальных должностей, сохранив лишь звание заслуженного профессора курантовского института; он входит также в состав редколлегий журналов Mathematics Magazine и Archive for History of Exact Sciences. Клайн является автором многих книг, из числа которых можно отметить часто цитируемые сочинения «Математика в западной культуре» [46]*{2} и, быть может, лучший из зарубежных курсов истории математики, «Математическое мышление от древности до настоящего времени» [45]*. Но в наши дни наибольшим успехом из всех сочинений{3} М. Клайна пользуется его книга «Математика. Утрата определенности», предлагаемая ныне советскому читателю; такой успех обусловлен как бесспорным литературным и педагогическим талантом автора, так и широтой и важностью затронутых в книге вопросов.

Настоящая книга М. Клайна именно и ставит своей целью ответить на вопросы, прозвучавшие в начале нашего предисловия. Автор пытается разъяснить сущность математики читателю, интересующемуся общенаучными проблемами, но не имеющему специального математического образования, и стремится ознакомить его с теми принципиальными проблемами, которые возникли в математике в конце XIX и в XX вв. В этом отношении книгу М. Клайна с полным основанием можно считать уникальной: столь широкий круг вопросов ранее в научно-популярной литературе по математике никогда не рассматривался. Изложение автора имеет «генетический» характер: он уделяет много внимания истории математики, особенно тщательно анализируя кризисные моменты, связанные с необходимостью ломки самой «математической идеологии». При этом автор достаточно подробно говорит о связи «чистой» и прикладной математики, о «непостижимой эффективности математики в естественных науках» (если использовать здесь название известной и цитируемой автором статьи Юджина Вигнера). Но самое значительное место в книге М. Клайна отводится вопросам, связанным с современным положением математики, и трудностям, обнаруженным в ее обосновании уже в нашем столетии, нередко в самые последние десятилетия.

Можно не сомневаться, что для многих читателей изложенные автором факты будут весьма неожиданными: мы привыкли считать, что математика всегда являлась образцом строгости, — автор же говорит о «нелогичном развитии» этой самой строгой и последовательной из наук и указывает, что античный идеал «доказательности» был достигнут здесь лишь во второй половине XIX в., а до этого общенаучный уровень арифметики и алгебры, геометрии и анализа был таким, что от него, безусловно, отшатнулись бы в ужасе древнегреческие мыслители. Неспециалисты привыкли считать, что в математике вообще не осталось никаких нерешенных проблем, но автор подчеркивает, что даже фундамент этой «самой научной из наук» не только не достроен, но, как будто никогда и не будет достроен до конца{4}, так что непротиворечивость математики вызывает известные сомнения (ср. впрочем, с шутливым высказыванием Вейля, процитированным ниже). Главы «Нелогичное развитие» являются, быть может, самыми удачными в книге: читателю будет интересно узнать, с каким трудом входили в математику современное понятие числа или геометрические представления, с которыми мы знакомимся ныне буквально на школьной скамье.

Однако книга Клайна нуждается и в некоторых предостережениях. Рассчитывая на вдумчивого читателя и доверяя его критическому чутью, автор приводит много разных — иногда друг другу противоречащих — точек зрения и свободно сталкивает разные суждения, не настаивая на каком-либо определенном. Однако из того, что Клайн подробно рассказывает, скажем, о философии Канта, вовсе не следует, что сам он является кантианцем. Излагая далее религиозные установки ученых XVII-XVIII вв., Клайн также позже открещивается от них. Автор не претендует на то, чтобы читатель принял какую-либо из изложенных в книге философских концепций, как не требует он и безоговорочно признать правоту той или иной из обсуждаемых им школ, занимающихся основаниями математики: Клайн хочет о многом рассказать, но вовсе не во многом убедить. Это, конечно, не означает, что в книге абсолютно не выражена собственная позиция автора. Так, анализируя взаимоотношения математики с действительностью, Клайн явно стоит на стороне тех, кто видит в математике мощный аппарат познания реального мира, хотя не обходит вниманием и ученых, настаивавших на «объективном» существовании математических понятий как образов, которые складываются в нашем мозгу и позволяют нам судить о Вселенной, существующей для нас лишь в той форме, какую придает ей наш разум (с этой позицией еще в середине XVIII в. полемизировал Л. Эйлер). Впрочем, книга М. Клайна, требующая известного внимания и определенной научной культуры, явно не рассчитана на легковерного читателя — это позволяет нам не спорить со всеми теми из изложенных в книге взглядов, с которыми ни редактор, ни читатель никогда не согласятся.


С этой книгой читают
Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Истина и красота: Всемирная история симметрии
Автор: Йэн Стюарт

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Школа клоунов

ОТ ИЗДАТЕЛЬСТВА:«Школа клоунов» — веселая, радостная, озорная книга, как и все книги, написанные замечательным писателем Эдуардом Успенским. Невероятные, фантастические истории происходят в этой школе. Чудо творится на глазах всегда там, где нет нудной зубрежки, строгих обязательств малышей перед старшими, где учителя и ученики понимают друг друга с полуслова. Оказывается, в игре, в забавах можно научиться серьезным вещам — войти в мир знаний и стать человеком образованным, а значит, и свободным, независимым.Откройте книгу, и вы войдете в дом сказки, доброты, а зло — на этот раз не страшное, а смешное — будет метаться вокруг да около, и в конце концов потерпит неудачу.


Дерево на крыше

Искренняя, трогательная история женщины с говорящим именем Вера.Провинциальная девчонка, сумевшая «пробиться в артистки», испытала и ужас блокады, и голодное безумие, и жертвенную страсть, и славу.А потом потеряла все…Где взять силы, чтобы продолжать жить, когда судьба обрушивает на тебя беду за бедой?Где взять силы, чтобы продолжать любить, когда мужчины предают и лгут, изменяют и охладевают?Где взять надежду, когда кажется, что худшее уже случилось?Можно опустить руки и впасть в глухое отчаяние.Можно надеяться на чудо.А можно просто терпеть.


Изобретательный патриот
Автор: Амброз Бирс

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вопрос крови
Автор: Иэн Рэнкин

В частной школе в пригороде Эдинбурга бывший военный застрелил двух подростков, а затем покончил с собой. По мнению инспектора Ребуса, неясно в этом преступлении только одно — его причина. Но поиски мотивов заводят сыщика куда дальше, чем он предполагал. Инспектор буквально одержим загадочной личностью преступника. Отныне он — его душеприказчик, призванный разобраться в клубке тайн, которыми окутано прошлое самоубийцы. Между тем над Ребусом сгущаются тучи. Подонок, преследовавший его напарницу, сгорел заживо в собственном доме.


Другие книги автора
Математика. Поиск истины.
Автор: Морис Клайн

Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.