Математические олимпиады по лигам. 5-9 классы

Математические олимпиады по лигам. 5-9 классы

Авторы:

Жанр: Математика

Цикл: Внеклассная работа

Формат: Полный

Всего в книге 11 страниц. У нас нет данных о годе издания книги.

В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.

Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.

Читать онлайн Математические олимпиады по лигам. 5-9 классы


Предисловие

Когда мы слышим слово «олимпиада», то ассоциируем его с сильными учащимися, отличниками. Подобный подход оправдан, если речь идет о городских, районных, областных, республиканских, Всероссийских и Международных математических олимпиадах. На таких уровнях сама цель олимпиад – выявление одаренных и нестандартно мыслящих учащихся, определение сильнейших из них. Однако задачи внутришкольных олимпиад нам видятся гораздо шире.

В книге представлен опыт автора по проведению олимпиад в лицее г. Лобни Московской области. Их отличительная особенность: в олимпиадах участвуют все! Причем термин «все» следует понимать в буквальном смысле слова, а именно как 100 %-ный охват учащихся, без исключений. С этим связаны и дифференцирование заданий по уровню сложности, и включение в олимпиады, помимо нестандартных, чисто технических заданий (примеры, уравнения, типовые задачи и т. д.).

Рассмотрим основное содержание и правила проведения наиболее популярных олимпиад, которые и вошли в книгу.

Олимпиады по лигам (5–6 классы)

Новая и чрезвычайно интересная форма внеклассной работы по предмету. Учителя, знающие, как устроены лиги в чемпионатах страны по различным видам спорта, без труда разберутся в этой системе.

Принцип проведения игры прост. Сначала дается общее задание для всех, по результатам которого определяется, кто в какой лиге (второй, первой, высшей или суперлиге) начинает играть.

Далее выбирается день недели, в который постоянно будут проходить соревнования. Выбор дня определяется действующим расписанием. Желательно, чтобы все классы параллели имели одинаковое количество уроков в этот день (напоминаем, что в олимпиаде участвуют все).

Для лучшего понимания рассмотрим правила игры на конкретном примере.

Пусть в параллели пятых классов 53 человека. После предварительного тура 10 человек определены в суперлигу, 15 – в высшую, 15 – в первую и 13 – во вторую. Определен постоянный день игр – четверг.

В первый такой четверг соревнуются участники второй лиги (вторая лига, 1 тур). Они решают шесть заданий за 40–60 мин (время определяется учителем). После проведения первого тура и проверки работ участники, занявшие первые пять мест, переходят в первую лигу. Остальные 8 человек получают места с 53 по 46.

В следующий четверг соревнуются 20 человек (15 человек, определенных первоначально в первую лигу плюс пятеро перешедших из второй лиги). После проверки работ происходит следующее: лучшие 5 участников переходят в высшую лигу; остальные 15 человек получают места с 45 по 31; 5 участников, занявших последние места (в нашем примере 41–45 места), переходят во вторую лигу.

В следующий (третий) четверг соревнуются 20 человек (15 человек, определенных изначально в высшую лигу плюс пятеро перешедших из первой лиги). После проверки работ, как и в предыдущем случае: 5 лучших участников переходят в суперлигу; остальные 15 человек получают места с 30 по 16; 5 участников, занявших 26–30 места, переходят в первую лигу.

В четвертый четверг проходит первый тур суперлиги. Все участники в итоге получают места с 1 по 15, причем участники, занявшие 11–15 места, переходят в высшую лигу.

Затем по тем же правилам проходит второй тур в каждой из четырех лиг, затем третий и т. д.

Если учащийся по болезни или по другим причинам пропускает какой-нибудь тур своей лиги, то он набирает 0 баллов и выбывает в более низшую лигу (а если он во второй лиге – просто занимает последнее место).

В книге представлено два комплекса олимпиад по лигам:

1. Олимпиады по лигам (5–6 классы), адаптированные под учебник Г. В. Дорофеева и Л. Г. Петерсон. Учителя математики знают, что если пятиклассники учатся по учебному комплекту Г. В. Дорофеева и Л. Г. Петерсон, то за 5 класс проходится чуть ли не вся программа 6 класса. Это нашло свое отражение в содержании задач.

Всего в лигах предусмотрено 10 туров. Итоговые результаты подводятся просто (лучше всего это сделать в Excel). Пусть некоторый учащийся в течение десяти туров занимал места: ах, а2, ах... а. Из данных чисел отбрасываются лучший и худший результаты, а далее считается среднее арифметическое оставшихся 8 чисел:

У кого меньше число Ь, тот и выиграл (для сортировки участников по местам можно применить известную в Excel команду РАНГ). Небольшое пояснение: лучший результат отбрасывается, так как бывает случайное попадание учащегося в высшую лигу и суперлигу перед первым туром, а худший результат учащийся также может показать случайно, например, вследствие пропуска по болезни.

Итоговая таблица может выглядеть так:

2. Олимпиады по лигам (5–6 классы), адаптированные под учебник Н. Я. Виленкина и др.

Эти олимпиады четко разделены на два вида:

стандартная лига (примеры, уравнения, типовые задачи и т. д.);

олимпиадная лига (нестандартные задания).

Разделение связано с тем, что в учебном комплекте Н. Я. Виленкина и др. практически отсутствуют задачи на развитие логического мышления (правда, это не является недостатком учебника, просто он преследует другие дидактические цели). А потому есть смысл разделить математическое соревнование учащихся на две части.


С этой книгой читают
Странности цифр и чисел

Тим Глинн-Джонс — автор этой необычной книги — знает о цифрах все. Вы убедитесь в этом, прочитав его занимательные истории «от нуля до бесконечности». С их помощью вы перестанете опасаться числа 13, разберетесь, какую страшную тайну хранит в себе число 666, узнаете, чем отличается американский миллиард от европейского и почему такие понятия как Время, Вселенная и Смерть, можно определить только через бесконечность.


Математика в занимательных рассказах

В книге раскрываются математические загадки, зашифрованные в приключенческих и фантастических рассказах известных авторов Герберта Уэллса, Жюля Верна, Курда Лассвица и др. Возможно ли путешествие на мыльном пузыре? Существует ли механизм для произвольного движения в четвертом измерении? Ответы на эти и другие — непременно интересные — вопросы любознательный читатель найдет здесь.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Новый взгляд на мир. Фрактальная геометрия

Хотя в природе всегда существовали объекты с неравномерной и даже хаотичной структурой, ученые долгое время не могли описать их строение математическим языком. Понятие фракталов появилось несколько десятков лет назад. Именно тогда стало ясно, что облака, деревья, молнии, сталактиты и даже павлиний хвост можно структурировать с помощью фрактальной геометрии. Более того, мы сами в состоянии создавать фракталы! В результате последовательного возведения числа в квадрат появляется удивительное по красоте и сложности изображение, которое содержит в себе новый мир…


Всяк сверчок

Часто ли автор очередного зубодробительного боевика задумывается над подлинными чувствами своего супергероя? Может быть, супергерою по душе вышивание крестиком, а распылять галактики на атомы и мочить жукоглазых ему совсем не хочется?


Вычислитель

Смертная казнь на планете Хлябь давно отменена. Высшая мера здесь – изгнание... В огромное болото, через которое можно добраться к Счастливым Островам. Счастливым, потому что там можно жить, а не медленно умирать, быстро теряя человеческий облик. Вот только ещё никому не удалось пройти 300 километров через болото.Но однажды к высшей мере был приговорён вычислитель, гениальный человек, способный просчитать практически всё…


Двуликий

Не стоит гневить Богов, они могут и наказать. И не факт, что накажут именно виновных. Например, решат, что родившиеся двойняшки должны быть неразлучны, пока не встретят истинную любовь, в назидание родителям не сумевшим отстоять благословенный ими - Богами, союз, значит - так и сделают. Кто же разрушит это проклятье и вернет все на свои места?



Другие книги автора
Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Интеллектуальные марафоны в школе. 5-11 классы

В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.


Поделиться мнением о книге