Быстрый счет. Тридцать простых приемов устного счета

Быстрый счет. Тридцать простых приемов устного счета

Авторы:

Жанр: Математика

Циклы: не входит в цикл

Формат: Полный

Всего в книге 2 страницы. Год издания книги - 1941.

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность. Книга завершается финалом, связывающим воедино темы и сюжетные линии, исследуемые на протяжении всей истории. В целом, книга представляет собой увлекательное и наводящее на размышления чтение, которое исследует человеческий опыт уникальным и осмысленным образом.

Читать онлайн Быстрый счет. Тридцать простых приемов устного счета


Ленинград.

От составителя

В настоящее время в продаже нет руководств, содержащих наставления к быстрому выполнению счетных операций в уме. Мы сочли поэтому полезным собрать в краткой брошюре наиболее простые и легко усваиваемые приемы быстрого устного счета, Они рассчитаны на средние способности имеют в виду не публичные выступления на эстраде, а потребности повседневной жизни. Пользующиеся книжечкой должны помнить, что успешное овладение ее указаниями предполагает не механическое, а вполне сознательное распоряжение приемами и, кроме того, более или менее продолжительную тренировку. Зато, усвоив рекомендуемые приемы, можно выполнять быстрые расчеты в уме с безошибочностью письменных вычислений.

Умножение на однозначное число

§ 1.

Чтобы устно умножить число на однозначный множитель (например, 27 X 8) выполняют действие, начиная с умножения не единиц, как при письменном умножении, а иначе: умножают сначала десятки множимого (20X8 = 160), затем единицы (7*8 =56) и оба результата складывают.

Еще примеры:

34*7=30*7+4*7=210+28=238

17*6=40*6+7*6=240+42=282

§ 2.

Полезно знать на память таблицу умножения до 19*9:



Зная эту таблицу, можно умножение например, 147*8 выполнить в уме так: 147*8-140*8+7*8= 1120 + 56= 1176

§ 3

Когда одно из умножаемых чисел разлагается на однозначные множители, удобно бывает последовательно умножать на эти множители. Например: 225*6=225*2*3=450*3=1350

Умножение на двузначное число

§ 4

Умножение на двузначное число стараются облегчить для устного выполнения, приводя это действие к более привычному умножению на однозначное число.

Когда множимое однозначное, мысленно переставляют множители и выполняют действие, как указано в § 1. Например:

6*28=28*6=120+48=168

§ 5.

Если оба множителя двузначные, мысленно разбивают один из них на десятки и единицы. Например:

29*12=29*10+29*2=290+58= 348

41*16=41*10+41*6 = 410+246 =656

(или 41*16=16*41 = 16*40+16*1=640+16=656

Разбивать на десятки и единицы выгоднее тот множитель, в котором они выражены меньшими числами.

§ 6.

Если множимое или множитель легко разложить в уме на однозначные числа (напр., 14 = 2*7), то пользуются этим, чтобы уменьшить один из множителей, увеличив другой во столько же раз (ср. § 3). Например:

45*14 =90*7=630

Умножение на 4 и на 8

§ 7.

Чтобы устно умножить число на 4, его дважды удваивают. Например:

112*4 =224*2=448

335*4 = 670*2 =1340

§ 8.

Чтобы устно умножить число на 8, его трижды удваивают. Например:

217*8 = 434*4=868*2=1736

(Eще удобнее: 217*8=200*8 +17*8= 1600*13=1736.

Деление на 4 и на 8

§ 9.

Чтобы устно разделить число на 4, его дважды делят пополам. Например:

76:4 =38:2=19

236:4=118:2=59

§ 10.

Чтобы устно разделить число на 8, его трижды делят пополам. Например:

464:8=232:4=116:2=58

516:8=258:4=129:2= 64 1/2

Умножение на 5 и на 25

§ 11.

Чтобы устно умножить число на 5 умножают его на 10/2, т. е. приписывают к числу ноль и делят пополам. Например:

74*5= 740:2= 370

243*5=2430:2=1215

При умножении на 5 числа четного удобнее сначала делить пополам и к полученному приписать ноль. Например:

74*5 = 74/2*10=370

§ 12.

Чтобы устно умножить число на 25, умножают его на 100/4 , т. е.—если число кратно 4-х —делят на 4 и к частному приписывают два ноля. Например:

72*25=72/4*100= 1800

Если же число при делении на 4 дает остаток, то прибавляют

при остатке: к частному

1 25

2 50

3 75

Основание приема ясно из того, что

100:4=25;

200:4=50;

300:4=75

Умножение на 1>1/>2, на 1 >1/>4, на 2>1/>2, на >3/>4

§ 13.

Чтобы устно умножить число на 1>1/>2 прибавляют к множимому его половину. Например:

34*1>1/>2 = 34 + 17=51

23*1>1/>2=23 + 11>1/>2 = 34>1/>2 (или 34,5)

§ 14.

Чтобы устно умножить число на 1>1/>4 Прибавляют к множимому его четверть. Например:

48*1>1/>4 =48 +12=60

58*1>1/>4 = 58+14 >1/>2=72>1/>2 или 72,5

§ 15

Чтобы устно умножить число на 2>1/>2. к удвоенному числу прибавляют половину множимого.

Например: 18*2>1/>2.=36+9= 45;

39*2>1/>2.= 78 + 19>1/>2.= 97>1/>2 (или 97,5)

Другой способ состоит в умножении на 5 и делении пополам:

18*2>1/>2 = 90:2 = 45

§ 16.

Чтобы устно умножить число на >3/>4 (т. е. чтобы найти >3/>4 этого числа), умножают число на 1>1>/2 и делит пополам. Например:

30 * >3/>4 = (30+15)/2= 22>1/>2 (или 22,5)

Видоизменение способа состоит в том, что от множимого отнимают его четверть или к половине множимого прибавляют половину этой половины.

Умножение на 15, на 125, на 75

§ 17

Умножение на 15 заменяют умножением на 10 и на 1>1/>2, (потому что 10*1>1/>2 =15) Например:

18*15=18*1>1/>2*10=270

45*15=450+225=675

§ 18.

Умножение на 125 заменяют умножением на 100 и на 1>1>/4 (потому что 100*1>1>/4>=125). Например:

26*125 = 26*100*1>1>/4 = 2600 + 650 = 3250

47*125 = 47*100*1>1>/4 = 4700+4700/4= 4700+1175 = 5875

§ 19.

Умножение на 75 заменяют умножением на 100 и на >3/>4 (потому что 100*>3/>4=75). Например:

18*75= 18*100*>3/>4 =1800* >3/>4 =(1800 + 900)/2=1350

Примечание. Некоторые из приведенных примеров удобно выполняются также приемом § 6

18*15 = 90*3 = 270

26*125 = 130*25 = 3250

Умножение на 9 и на 11

§ 20.

Чтобы устно умножить число на 9, приписывают к нему ноль и отнимают множимое. Например:

62*9=620-62=600—42=558

73*9=730-73=700—43=657

§ 21

Чтобы устно умножить число на 11, приписывают к нему ноль и прибавляют множимое. Например:


С этой книгой читают
Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Истина и красота: Всемирная история симметрии
Автор: Йэн Стюарт

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Товарищ по партии

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Детектив из села Бубновый Туз

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кремлевская пуля

Сотрудникам ФСБ становится известно о готовящемся покушении на российского президента. Приняты беспрецедентные меры по охране главы государства, к поиску террористов привлечены все столичные силовые структуры. Не остался в стороне и Московский уголовный розыск. Полковнику Льву Гурову приказано найти исполнителя убийства. Сыщик начинает расследование и вскоре выходит на влиятельное преступное сообщество, члены которого в последнее время активно занимаются поиском киллера экстра-класса…


Дочь палача и черный монах
Автор: Оливер Пётч

Якоб Куизль – грозный палач из древнего баварского городка Шонгау. Именно его руками вершится правосудие. Горожане боятся и избегают Якоба, считая палача сродни дьяволу…В январе 1660 года смерть посетила церковный приход близ баварского города Шонгау. При весьма загадочных обстоятельствах умер местный священник. У молодого лекаря Симона Фронвизера нет сомнений: всему виной смертоносный яд! Городской палач Куизль решает заняться этим странным делом. Он и его дочь Магдалена выясняют, что перед смертью священник обнаружил старинную гробницу под церковью.


Другие книги автора
Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.