Количество — объективная определенность качественно однородных явлений, или качество в его пространственно-временном аспекте, со стороны его бытия в пространстве и времени. Поскольку все явления в природе и человеческой истории существуют в пространстве и изменяются во времени, постольку они и могут рассматриваться как качественно тождественные, т. е. со стороны лишь количественных различий, а категория количества является универсальной, т. е. логической категорией, необходимой ступенькой познания действительности.
Универсально-логический характер категории количества доказывается всей историей познания и практики человека. Познание внешнего мира на стадии его количественного анализа связано с методами и языком математики. Количественная характеристика явлений необходима в процессе целенаправленного изменения природы человеком. Предмет, не отраженный в аспекте количества, не может считаться конкретно познанным. Однако ошибочно видеть только в чисто количественном описании явлений их полное, тем более исчерпывающее, познание. Односторонне-количественный взгляд на действительность есть такой, с точки зрения которого единственно объективными формами существования внешнего мира являются лишь пространственно-геометрические контуры тел и их изменения во времени, т. е. механическое перемещение частей материи, а все остальные чувственно воспринимаемые качества и свойства тел объявляются субъективными иллюзиями человека, его органов чувств. Поэтому односторонне-количественное понимание внешнего мира и выступает исторически как механистический материализм.
Идеалистический вариант односторонне-количественного взгляда на мир и его познание всегда связан с идеалистическим же пониманием пространства и времени, с толкованием их как субъективно-психологических (Юм) или трансцендентальных (Кант) категорий. В своем крайнем выражении этот взгляд приводит к чисто формальному представлению о количестве как о чисто субъективном феномене.
Материализм, отстаивая предметный смысл категории количества, а также ее универсальный характер, всегда усматривал предметную основу количественно-математических характеристик в реальной пространственно-временной форме бытия материи. Количество всегда находится в диалектически противоречивой связи с качеством, выступающей, в частности, как закон перехода количественных изменений в качественные и обратно.
Первой попыткой специально проанализировать проблему количество можно считать исследования пифагорейцев. Непосредственным предметом их анализа явилось число как абстрактнейшая форма выражения количества, сложившаяся в стихийно-практическом сознании людей на основе их предметно-практической деятельности. Число сразу же обнаруживает свойства, кажущиеся таинственными. Натуральный ряд чисел содержит в себе ярко выраженные правильности, гармонически-периодические соотношения. Но ведь люди, создавшие числа и расположившие их в естественную (натуральную) последовательность, вовсе не заботились о том, чтобы вложить в нее эти правильные соотношения. Откуда же они там взялись? Религиозно-мистическая традиция подсовывала готовый ответ, объявляя загадочные свойства чисел и числовых рядов божественной природой числа. Пифагорейская мистика чисел и есть не что иное, как отсутствие объяснения, принятое за объяснение, или постановка действительной проблемы, выданная за ее решение. В наблюдениях пифагорейцев был зафиксирован также и тот загадочный факт, что «правила», обнаруженные в числовых рядах, затем открываются и в явлениях внешнего (чувственно созерцаемого) мира, например в соотношениях длин звучащих частей струн и т. п. Этот факт также был отнесен к числу божественных. Отсюда прямо вытекало и пифагорейское понимание задачи рационального познания. Оно сводилось к тому, чтобы обнаруживать в чувственно воспринимаемых явлениях те самые соотношения и закономерности, которые были до этого обнаружены в числах как таковых. Однако обожествление числа очень скоро привело пифагорейскую школу к ряду противоречий. Оказалось, например, что невозможно найти путем подбора такие целые числа, которые выражали бы сформулированное самим Пифагором правильное соотношение между квадратом гипотенузы и квадратами катетов, когда катеты равны (т. е. когда гипотенузой служит диагональ квадрата). Это «атеистическое» свойство квадрата настолько обескуражило священнослужителей пифагорейского союза, что его решили держать в строжайшей тайне. Ни к чему не привели и старания выразить через целое число соотношение радиуса и окружности. Пифагорейцы в итоге оказывались перед альтернативой — либо отказаться от священных основоположений, либо закрыть дорогу свободному математическому исследованию. Тайны и мистические обряды, которыми пифагорейцы окружили число, превратились очень скоро в тормоз развития античной математики.
Еще острее выявились трудности, связанные с числом, в исследованиях элейской школы. Здесь число было поставлено на очную ставку с чувственно воспринимаемым фактом движения тел, перемещения тела в пространстве. Между выражением этого факта через число как отчетливо выраженную дискретную величину и столь же отчетливо выраженной непрерывностью движения тела в пространстве и времени был зафиксирован неразрешимый конфликт, апория. У числа появился новый грозный враг — бесконечность. Оказывалось, что любая конечная величина (тела, пройденного им пути или отрезка времени, в течение которого этот путь проходится), будучи выражена через число, выглядит как бесконечная величина, как нечто неисчислимое. До исследований элейцев количество выступало в сознании только в виде числа, выражающего определенную величину, т. е. как нечто всецело дискретное, многое. Апории Зенона остро зафиксировали, что число и величина суть формы выражения чего-то иного, притом такие формы, которые бессильны выразить это иное. То, что выражается в числе как многое, как прерывное, на самом деле есть «одно», «единое», «непрерывное». Объективно только здесь и мог встать вопрос о том, что такое количество независимо от его выражения в числе, т. е. как особое понятие, отличное от понятий числа и величины. Рассуждения элейцев разрушали представление о божественной природе числа. По существу они доказывали, что число, связанное с представлением о дискретности бытия, есть лишь субъективно произвольная форма, извне налагаемая на бытие, которое на самом деле непрерывно и едино, и что поэтому число и числовые соотношения выражают не подлинное бытие, а лишь видимость, пестрое марево чувственно воспринимаемых фактов. Тем самым математика попадала, по классификации элейцев, в сферу «мнения». По этой причине элейская школа не могла противопоставить пифагорейской мистике чисел своего принципа математического мышления.