И. С. ШКЛОВСКИЙ, член-корреспондент АН СССР
ОДНИ ВО ВСЕЛЕННОЙ?
Идея множественности обитаемых миров так же стара, как и человеческая культура. Туманные представления о множественности обитаемых миров пронизывают первобытные и древние религиозные культы (например, буддизм). По мере развития астрономии идея о множественности обитаемых миров постепенно принимает конкретное выражение. Подавляющее большинство древнегреческих философов, как материалистов, так и идеалистов, придерживались концепции множественности обитаемых миров.
В конце эпохи Возрождения, после пятнадцативекового перерыва идея о множественности миров вновь стала абсолютно господствующей. В настоящее время и богословы уже признают возможность существования разумных существ в других мирах. Поэтому со всей определенностью следует сказать, что водораздел между религией и наукой и идеализмом и материализмом в современную эпоху (так же как и в античное время) проходит отнюдь не по обсуждаемой нами проблеме.
Представление о всеобщей населенности космоса господствовало вплоть до первой половины XIX века. Достаточно сказать, что Гершель (а до него — Ньютон) считали Солнце обитаемым! Еще в конце XIX века известный американский астроном В. Пикеринг «доказывал», что на поверхности Луны имеют место массовые миграции насекомых, что якобы объясняет наблюдаемую изменчивость лунного ландшафта. Эта странная гипотеза применительно к Марсу возродилась в середине нашего века.
При всем при том ведущей тенденцией в развитии концепции множественности обитаемых миров за последнее столетие является систематическое сокращение числа космических объектов, рассматриваемых как возможное пристанище жизни.
Подлинно научный подход к старейшей проблеме множественности обитаемых миров стал возможен только в последнюю четверть века. Именно в это время развернулась "вторая революция" в астрономии, ознаменовавшаяся огромным количеством открытий, существенно изменивших наши представления о Вселенной. Постепенно стали вырисовываться контуры эволюционирующей, развивающейся от простого к сложному Вселенной. Серьезные успехи были достигнуты в понимании происхождения звезд и их эволюции. Огромное развитие получила метагалактическая астрономия — фундамент эволюционной космологии. Выдающиеся успехи радиоастрономии стимулировали идею о возможности установления межзвездной радиосвязи. Эта идея в последние годы стала, пожалуй, основной в проблеме внеземных цивилизаций. Выявилась тенденция подменить общую проблему множественности обитаемых миров проблемой связи с внеземными цивилизациями, что, конечно, принципиально неверно. Наконец, минувшие два десятилетия ознаменовали начало космической эры в истории человечества и первыми шагами в освоении ближнего космического пространства. Космос властно вторгся в мироощущение всех жителей нашей планеты. Тем самым проблема внеземных цивилизаций и связи с ними из области научной фантастики (которую она давно питала) стала вполне актуальной. В последние годы было проведено несколько научных симпозиумов и конференций, где проблематика разумной жизни во Вселенной подвергалась систематическому анализу. Особенно плодотворным и представительным был советско-американский симпозиум, имевший место на Бюраканской обсерватории АН Армянской ССР осенью 1971 года.
Хотя на этих симпозиумах и обсуждался весьма широкий круг вопросов, доминировала проблематика, относящаяся к вопросу связи с внеземными цивилизациями. Такое «прагматическое» отношение к проблеме вряд ли может существенно продвинуть ее. Куда перспективнее нам представляется общий, логико-философский подход, который мы постараемся в этой статье обосновать.
Пожалуй, основной формулой для всей проблемы внеземных цивилизаций является простое соотношение, получившее название "формулы Дрэйка": n = N*Р1*Р2*Р3*Р4*(t/T)
где N — число высокоразвитых цивилизаций, существующих в Галактике одновременно с нами, n — полное число звезд в Галактике, P1 — вероятность того, что звезда имеет планетную систему, Р2 — вероятность возникновения жизни на планете, Р3 — вероятность того, что возникшая на планете жизнь в процессе эволюции станет разумной, Р4 — вероятность того, что разумная жизнь вступит в технологическую эру, t — средняя продолжительность технологической эры, Т возраст Галактики.
По мере развития науки в последние годы наблюдается совершенно отчетливо выраженная тенденция к уменьшению множителей в формуле Дрэйка. Сам Дрэйк еще в 1961 году пытался обнаружить искусственные радиосигналы от ближайших к нам звезд Тау Кита и Епсилон Индейца. Сейчас ясно, что эта попытка была просто наивной. Вероятность существования планетных систем вокруг звезд, которая большинством участников Бюраканского симпозиума представлялась достаточно высокой (0,1 — 0,01), скорее всего, значительно меньше. Нашумевшее открытие американским астрономом Ван де Кампом планетной системы вокруг одной из самых близких к Солнцу звезд — знаменитой "летящей звезды Барнарда" оказалось, по всей видимости, чисто инструментальным эффектом, довольно обычным при измерениях, находящихся на пределе точности. Тем самым важнейший аргумент в пользу чрезвычайно большой распространенности планетных систем оказался скомпрометированным. Недавно, например, выяснилось, что, по крайней мере, 98 процентов звезд типа нашего Солнца входят в состав двойных (или кратных) систем. В таких системах, если не рассматривать исключительно маловероятные случаи, жизнь развиться не может, так как температура поверхностей находящихся там гипотетических планет должна меняться в недопустимо широких пределах. Похоже на то, что наше Солнце, эта странная одиночная звезда, окруженная семьей планет, скорее всего, является редким исключением в мире звезд. Тем самым множитель P1 в формуле Дрэйка уменьшается в сотню раз.